National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Convective storms and lower stratospheric moisture
Šťástka, Jindřich ; Setvák, Martin (advisor)
Title: Convective storms and lower stratospheric moisture Author: Jindřich Šťástka Department: Department of Atmospheric Physics Supervisor: RNDr. Martin Setvák, CSc., Czech Hydrometeorological Institute Abstract: The primary focus of this thesis is to diagnose contributions to upper tropo- spheric and lower stratospheric (UTLS) water vapor from convective storms. The first parts of this work introduces two approaches used for a detection of lower stratospheric water vapor above convective storm tops - brightness temperature difference (BTD) technique and EOS MLS measurements. The BTD technique is based on brightness temperature difference between the water vapor absorp- tion and infrared window bands, assuming a thermal inversion above the cloud top level. The most frequently offered explanation of positive BTD values above convective storms is presence of warmer water vapor in the lower stratosphere. Furthermore, so called BTD anomalies were described and it was proposed an algorithm for objective detection of such BTD anomalies. Characteristics of pa- rameters describing BTD, BTD anomaly, infrared window brightness temperature were investigated during storms evolution on dataset of 320 storms from the area of Europe. The analysis of these characteristics proved highly probable conection between positive...
Convective storms and lower stratospheric moisture
Šťástka, Jindřich ; Setvák, Martin (advisor)
Title: Convective storms and lower stratospheric moisture Author: Jindřich Šťástka Department: Department of Atmospheric Physics Supervisor: RNDr. Martin Setvák, CSc., Czech Hydrometeorological Institute Abstract: The primary focus of this thesis is to diagnose contributions to upper tropo- spheric and lower stratospheric (UTLS) water vapor from convective storms. The first parts of this work introduces two approaches used for a detection of lower stratospheric water vapor above convective storm tops - brightness temperature difference (BTD) technique and EOS MLS measurements. The BTD technique is based on brightness temperature difference between the water vapor absorp- tion and infrared window bands, assuming a thermal inversion above the cloud top level. The most frequently offered explanation of positive BTD values above convective storms is presence of warmer water vapor in the lower stratosphere. Furthermore, so called BTD anomalies were described and it was proposed an algorithm for objective detection of such BTD anomalies. Characteristics of pa- rameters describing BTD, BTD anomaly, infrared window brightness temperature were investigated during storms evolution on dataset of 320 storms from the area of Europe. The analysis of these characteristics proved highly probable conection between positive...
Convective storms and lower stratospheric moisture
Šťástka, Jindřich ; Setvák, Martin (advisor) ; Púčik, Tomáš (referee) ; Zacharov, Petr (referee)
Title: Convective storms and lower stratospheric moisture Author: Jindřich Šťástka Department: Department of Atmospheric Physics Supervisor: RNDr. Martin Setvák, CSc., Czech Hydrometeorological Institute Abstract: The primary focus of this thesis is to diagnose contributions to upper tropo- spheric and lower stratospheric (UTLS) water vapor from convective storms. The first parts of this work introduces two approaches used for a detection of lower stratospheric water vapor above convective storm tops - brightness temperature difference (BTD) technique and EOS MLS measurements. The BTD technique is based on brightness temperature difference between the water vapor absorp- tion and infrared window bands, assuming a thermal inversion above the cloud top level. The most frequently offered explanation of positive BTD values above convective storms is presence of warmer water vapor in the lower stratosphere. Furthermore, so called BTD anomalies were described and it was proposed an algorithm for objective detection of such BTD anomalies. Characteristics of pa- rameters describing BTD, BTD anomaly, infrared window brightness temperature were investigated during storms evolution on dataset of 320 storms from the area of Europe. The analysis of these characteristics proved highly probable conection between positive...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.